Report No. : TSZ23020642-P02-R01 Page 1 of 6

中国认可 国际互认 检测 TESTING CNAS L5138

		32 W.I.S
Client	:	NANJING CBAK ENERGY TECHNOLOGY COMPANY LIMITED
Address :		Plant 8, phase II, standard plant, No. 86, Shuanggao Road, economic development
Tian Su		zone, Gaochun District, Nanjing, Jiangsu Province

The following sample(s) and sample information was/were submitted and identified by/on the behalf of the client

Sentin of the chieff	54	
Sample Name	(0FM)	Lithium ion cell
Model/P.O. No.	:	32140FS 7 ₁₀₁ 54
Manufacturer	:	NANJING CBAK ENERGY TECHNOLOGY COMPANY LIMITED
Received Date	*	Mar 01, 2023
Test Period	:	Mar 01, 2023~Mar 07, 2023
Test Requested	E MA	EU RoHS 2011/65/EU and 2015/863/EU

Cor	nclusion 5 Trans 5	E M.
	Lead(Pb), Cadmium(Cd), Mercury(Hg), Hexavalent Chromium(Cr ⁶⁺)	PASS
-	Polybromobiphenyls (PBBs) & Polybromodiphenyl ethers (PBDEs)	PASS
-	DBP, BBP, DEHP, DIBP	PASS

For Further Details, Please Refer To the Following Page(s)

Approved by:

Date: Mar 09, 2023

Add: Building 1/4, No.2, Jinlong Road, Longgang District, Shenzhen, Guangdong, China.

Tel: 0755-89457984

E-mail: tsjc@tiansu.org

Post Code: 518116

Website: www.tiansu.org

Page 2 of 6

Test Method

Test Item(s)	Test Method	Equipment	MDL Tim 5"
Pb, Cd, Hg, Cr, Br	IEC 62321-3-1:2013	XRF	5mg/kg
Pb, Cd	IEC 62321-5:2013	ICP-OES	5mg/kg
大湖 Hg Tian Su Tian Su	IEC 62321-4:2013+AMD1:2017	ICP-OES	5mg/kg
Cr ⁶⁺	IEC 62321-7-2:2017	INV.	5mg/kg
Crongian Su	IEC 62321-7-1:2015	UV-Vis 7 m 54	0.10μg/cm ²
PBBs & PBDEs	IEC 62321-6:2015	GC-MS	714 St 5mg/kg
DBP, BBP, DEHP, DIBP	IEC 62321-8:2017	GC-MS	30mg/kg

Test Result(s)

- Screening test results

- Sercening	test result								
Test items	7144 54 1	2	3 7100	4	5	6	7	8	9
Pb	P	P	P	P	P	D D	D	P Tia	S P
Cd 7600	5ª P	P	P	P	P	P P	P	P	P 🙏
Hg	P 🙏	P	P	P	P	P	P	P	P
Cr	P Tian	P	P	P	P	P 🏃	P	P	P
Br	P	P	5 /	P	1. M	/	/	P	P
Conclusion	P ⁵	P	P 🏂	P P	P	D	D Tie	P	P

				CAL S	1000				
Test items	10	11	12	13	14	15	16	17	18
Pb	P	P	P	D	P	P	P	P	P
Cd	Р 📶	S ^w P	P	P	P	P	P	P	P
Hg	P	P	S P	P	P	P	P	Р	P Su
Cr	P	P	P	D	P	P	P	5 P	P
Br	P	P	Р 7	.54	/	P	/	1	P
Conclusion	P	P P	P	D	P	P	P	P	P

Note:

- It is the result on total Br while testing PBBs and PBDEs by XRF. It is the result on total Cr while testing Hexavalent Chromium by XRF.

Page 3 of 6

- Results are obtained by XRF for primary screening, and chemical testing by ICP (for Cd, Pb, Hg), UV-Vis (for Cr(VI)) and GCMS (for PBBs, PBDEs) is recommended to be performed, if the concentration exceeds the below warning value according to IEC 62321-3-1:2013 (unit: mg/kg)

(6)		A 3 3 7 5 4				
Element	Polymer	Metal /	Composite Materials			
Cd	$P \le 70-3\sigma \le D \le 130+3\sigma \le F$	$P \le 70-3\sigma < D < 130+3\sigma \le F$	$P \le 50-3\sigma < D < 150+3\sigma \le F$			
DE MES	P≤700-3σ <d<< td=""><td>P≤700-3σ<d<< td=""><td>P≤500-3σ<d<< td=""></d<<></td></d<<></td></d<<>	P≤700-3σ <d<< td=""><td>P≤500-3σ<d<< td=""></d<<></td></d<<>	P≤500-3σ <d<< td=""></d<<>			
Pb	1300+3σ≤F	1300+3σ≤F	1500+3σ≤F			
Ша	P≤700-3σ <d<< td=""><td>P≤700-3σ<d<< td=""><td>P≤500-3σ<d<< td=""></d<<></td></d<<></td></d<<>	P≤700-3σ <d<< td=""><td>P≤500-3σ<d<< td=""></d<<></td></d<<>	P≤500-3σ <d<< td=""></d<<>			
Hg	1300+3σ≤F	1300+3σ≤F	1500+3σ≤F			
Br	P≤300-3σ <d< td=""><td>₹ <u>₩</u>_</td><td>P≤250-3σ<f< td=""></f<></td></d<>	₹ <u>₩</u> _	P≤250-3σ <f< td=""></f<>			
Cr	P≤700-3σ <d< td=""><td>P≤700-3σ<d< td=""><td>P≤500-3σ<f< td=""></f<></td></d<></td></d<>	P≤700-3σ <d< td=""><td>P≤500-3σ<f< td=""></f<></td></d<>	P≤500-3σ <f< td=""></f<>			

- P=PASS, F=FAIL, D=DETECTED
- mg/kg = ppm = 0.0001%, /= Not Available

- Chemical test results:

Test results of Pb, Cd, Hg and Cr6+

Test Item(s)	MDL	Limit				
	清 , 54	6	7 in 5"	13 7ian 5	(mg/kg)	
Lead(Pb)	5mg/kg	N.D.	N.D.	N.D.	1000	
Cadmium(Cd)	5mg/kg	N.D.	5 N.D.	N.D.	100	
Mercury(Hg)	5mg/kg	N.D.	N.D.	N.D.	1000	
Hexavalent Chromium(Cr ⁶⁺)#1	5mg/kg	/	7ian 5"	/	1000	
Hexavalent Chromium(Cr ⁶⁺)#2	0.10μg/cm ²	N.D.	N.D.	N.D.	/	

Note:

- mg/kg=ppm=parts per million;
- N.D.=Not Detected (<MDL); MDL=method detection limit;
- #1: For non-metal materials test.
- #2: For metal materials test:
 - "Positive" indicates Cr⁶⁺ in a sample is detected above 0.13µg/cm²;
 - "Negative" indicates Cr⁶⁺ in a sample is detected below 0.10µg/cm²;

Page 4 of 6

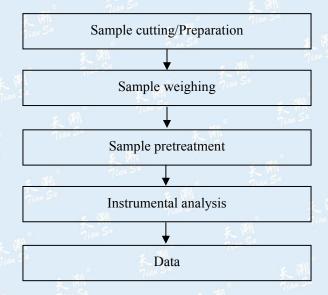
Test results of Phthalates

Test Item(s)	MDL .	Result(s) (mg/kg)					Limit
		1	2	7.45"	8	9	(mg/kg)
Dibutyl phthalate(DBP)	30mg/kg	N.D.	N.D.	N.D.	N.D.	N.D.	1000
Butyl benzyl phthalate(BBP)	30mg/kg	N.D.	N.D.	N.D.	N.D.	N.D.	1000
Di (2-ethylhexyl) phthalate(DEHP)	30mg/kg	N.D.	N.D.	N.D.	N.D.	N.D.	1000
Diisobutyl phthalate (DIBP)	30mg/kg	N.D.	N.D.	N.D.	N.D.	N.D.	1000

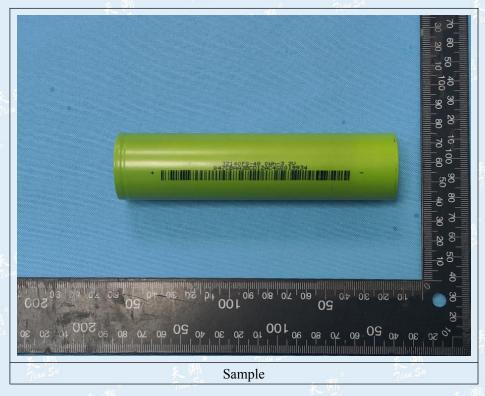
Test Item(s)	MDL		Limit				
A Time 5	# ·	10	5 11	12	15	18	(mg/kg)
Dibutyl phthalate(DBP)	30mg/kg	N.D.	N.D.	N.D.	N.D.	N.D.	1000
Butyl benzyl phthalate(BBP)	30mg/kg	N.D.	N.D.	N.D.	N.D.	N.D.	1000
Di (2-ethylhexyl) phthalate(DEHP)	30mg/kg	N.D.	N.D.	N.D.	N.D.	N.D.	1000
Diisobutyl phthalate (DIBP)	30mg/kg	N.D.	N.D.	N.D.	N.D.	N.D.	1000

Note:

- mg/kg=ppm=parts per million;
- N.D.=Not Detected (<MDL);
- MDL=method detection limit.

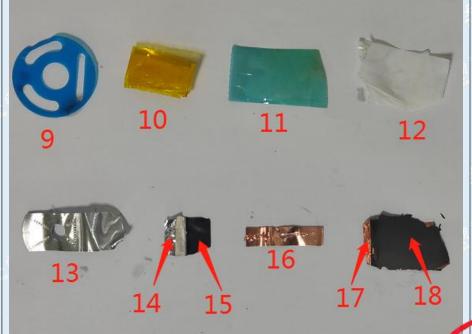

Test components:

1	Green plastic (case)	2	White plastic (Gasket)
3	Silver metal (case)	4	Black plastic ring
5	Silver metal cap	6	Aluminium sheet
7	Silver sheet metal	8	Translucent plastic ring
9	Blue Plastic (Gasket)	10	Yellow tape
11	Blue tape	12	White plastic (diaphragm)
13	Positive lug	14	Aluminum foil
15	Positive toner	16	Negative lug
17	Copper foil	18	Negative toner



Report No. : TSZ23020642-P02-R01 Page 5 of 6

Chemical Test Process


Photo of the sample

Page 6 of 6

******* End of report ******

This report is invalid without the Special Seal of Tiansu. This report shall not be allered, increased Report Seal

or deleted. The results shown in this report refer only to the sample(s) tested